1 год назад
Нету коментариев

Черная дыра рождает не только фотоны, но и дру­гие частицы. Сравнительно большие черные дыры мас­сой в несколько солнечных обладают столь низкой тем­пературой, что могут производить только «безмассо­вые» частицы — частицы, всегда летящие со скоростью света и не имеющие собственной массы покоя. К ним относятся фотоны, электронные и мюонные нейтрино, их античастицы и, наконец, еще гравитоны — кванты гра­витационных волн. Черная дыра массой, типичной, для звезд, рождает особенно много нейтрино (81% все­го потока) всех сортов, затем фотонов (17%) и грави­тонов (2%) (рис. 8). Тот факт, что разные частицы из­лучаются в разных количествах, объясняется различием их свойств. Нейтрино испускается больше всего, пото­му что их внутренний угловой момент (спин) минима­лен (V2), а гравитонов меньше всего, так как их спин максимален (2).

Спектр излучения черной дыры массой 3 Мс

Спектр излучения черной дыры массой 3 Мс

Черные дыры малой массы имеют большую темпе­ратуру. Так, температура черных дыр массой, меньшей 1017—1016 г, выше 109—1010 К. Эти черные дыры порож­дают, помимо перечисленных частиц, электронно-позитронные пары. Заметим, что размеры таких черных дыр составляют всего 10-10 см (в 1000 раз меньше размера атома).

Еще меньшие черные дыры массой < 5 • 1014 г спо­собны излучать мюоны и более тяжелые элементарные частицы. Черная дыра массой 1014 г излучает 12% тяже­лых частиц и античастиц, 28% электронов и позитронов, 48% нейтрино всех сортов, 11% фотонов и 1% гравито­нов (размер этих черных дыр меньше атомного ядра).

Как мы уже отмечали, такие карликовые черные ды­ры могли возникать только в далеком прошлом Вселен­ной. Особую важность квантовые процессы приобрета­ют именно для первичных черных дыр. Если в начале расширения Вселенной, когда вещество было плот­ным, образовались черные дыры массой, меньшей 1015г, то все они должны к нашему времени испариться. По этой причине процесс, открытый Хоукингом, имеет очень важное значение для космологии. Процесс испарения первичных черных дыр ведет к излучению высокочастот­ных фотонов — гамма-излучения. Так, черные дыры массой около 1015 г должны излучать кванты с энерги­ей около 100 МэВ.

Наблюдение таких квантов, приходящих из космоса, в принципе могло бы помочь обнаружению первичных черных дыр. Пока же они не обнаружены, и можно только сказать, что количество черных дыр массой око­ло 1015 г во Вселенной должно быть в среднем не боль­ше, чем десять тысяч на каждый кубический парсек. Если бы их было больше, то общее количество гамма-квантов с энергией около 100 МэВ было бы больше наб­людаемого сейчас потока гамма-квантов из космоса. Количество «десять тысяч» кажется большим, но вспом­ним, что масса первичных черных дыр ничтожна по сравнению, скажем, с массой звезды.

Скорее в плане «мечтаний» (хотя и строго научных) можно представить себе в. отдаленном будущем искус­ственное изготовление в космосе малых черных дыр. Они могли бы аккумулировать энергию, затраченную на их изготовление, и затем излучать ее в заданном тем­пе и с заданной энергией частиц, которые определяются массой черных дыр. Так, черная дыра массой 1015 г бу­дет испускать 1017 эрг/с на протяжении 10 млрд. лет.

Много еще неясного в новом явлении. Например, не­известно, испаряется ли черная дыра совсем без остат­ка или на ее месте остается частичка с так называемой лланковской массой, 10-5 г. Неясно, можно ли наблю­дать процесс испарения черных дыр во Вселенной. И, конечно, пока только фантастическими представляются какие-либо эксперименты с черными дырами в лабора­ториях физиков. Однако уже то, что известно, заставляет по-новому осмыслить многие аспекты эволюции материи во Вселенной.

comments powered by HyperComments