5 років тому
Немає коментарів

Sorry, this entry is only available in
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.

For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Черная дыра рождает не только фотоны, но и дру­гие частицы. Сравнительно большие черные дыры мас­сой в несколько солнечных обладают столь низкой тем­пературой, что могут производить только «безмассо­вые» частицы — частицы, всегда летящие со скоростью света и не имеющие собственной массы покоя. К ним относятся фотоны, электронные и мюонные нейтрино, их античастицы и, наконец, еще гравитоны — кванты гра­витационных волн. Черная дыра массой, типичной, для звезд, рождает особенно много нейтрино (81% все­го потока) всех сортов, затем фотонов (17%) и грави­тонов (2%) (рис. 8). Тот факт, что разные частицы из­лучаются в разных количествах, объясняется различием их свойств. Нейтрино испускается больше всего, пото­му что их внутренний угловой момент (спин) минима­лен (V2), а гравитонов меньше всего, так как их спин максимален (2).

Спектр излучения черной дыры массой 3 Мс

Спектр излучения черной дыры массой 3 Мс

Черные дыры малой массы имеют большую темпе­ратуру. Так, температура черных дыр массой, меньшей 1017—1016 г, выше 109—1010 К. Эти черные дыры порож­дают, помимо перечисленных частиц, электронно-позитронные пары. Заметим, что размеры таких черных дыр составляют всего 10-10 см (в 1000 раз меньше размера атома).

Еще меньшие черные дыры массой < 5 • 1014 г спо­собны излучать мюоны и более тяжелые элементарные частицы. Черная дыра массой 1014 г излучает 12% тяже­лых частиц и античастиц, 28% электронов и позитронов, 48% нейтрино всех сортов, 11% фотонов и 1% гравито­нов (размер этих черных дыр меньше атомного ядра).

Как мы уже отмечали, такие карликовые черные ды­ры могли возникать только в далеком прошлом Вселен­ной. Особую важность квантовые процессы приобрета­ют именно для первичных черных дыр. Если в начале расширения Вселенной, когда вещество было плот­ным, образовались черные дыры массой, меньшей 1015г, то все они должны к нашему времени испариться. По этой причине процесс, открытый Хоукингом, имеет очень важное значение для космологии. Процесс испарения первичных черных дыр ведет к излучению высокочастот­ных фотонов — гамма-излучения. Так, черные дыры массой около 1015 г должны излучать кванты с энерги­ей около 100 МэВ.

Наблюдение таких квантов, приходящих из космоса, в принципе могло бы помочь обнаружению первичных черных дыр. Пока же они не обнаружены, и можно только сказать, что количество черных дыр массой око­ло 1015 г во Вселенной должно быть в среднем не боль­ше, чем десять тысяч на каждый кубический парсек. Если бы их было больше, то общее количество гамма-квантов с энергией около 100 МэВ было бы больше наб­людаемого сейчас потока гамма-квантов из космоса. Количество «десять тысяч» кажется большим, но вспом­ним, что масса первичных черных дыр ничтожна по сравнению, скажем, с массой звезды.

Скорее в плане «мечтаний» (хотя и строго научных) можно представить себе в. отдаленном будущем искус­ственное изготовление в космосе малых черных дыр. Они могли бы аккумулировать энергию, затраченную на их изготовление, и затем излучать ее в заданном тем­пе и с заданной энергией частиц, которые определяются массой черных дыр. Так, черная дыра массой 1015 г бу­дет испускать 1017 эрг/с на протяжении 10 млрд. лет.

Много еще неясного в новом явлении. Например, не­известно, испаряется ли черная дыра совсем без остат­ка или на ее месте остается частичка с так называемой лланковской массой, 10-5 г. Неясно, можно ли наблю­дать процесс испарения черных дыр во Вселенной. И, конечно, пока только фантастическими представляются какие-либо эксперименты с черными дырами в лабора­ториях физиков. Однако уже то, что известно, заставляет по-новому осмыслить многие аспекты эволюции материи во Вселенной.