7 років тому
Немає коментарів

Sorry, this entry is only available in
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.

For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Какова же информационная роль электромагнитных полей в жизни рыб? Каково биологическое назначение разрядов, генерируемых рыбами? К сожалению, эти вопросы изучены недостаточно. Более или менее подробно исследовалось назначение разрядов и полей сильно- и слабоэлектрических рыб. Работы, посвященные изучению разрядов неэлектрических рыб, немногочисленны. В СССР в основном они проводились сотрудниками лаборатории ориентации рыб Института эволюционной морфологии и экологии животных им. А. Н. Северцова Академии наук СССР.
Результаты этих исследований позволяют установить экологические взаимосвязи в водоемах и наметить пути создания систем, управляющих поведением рыб.
Ритмичность жизнедеятельности всех тканей организма, в том числе и электрических тканей рыб, зависит от внешних и внутренних причин. Различают экзогенные ритмы, связанные с внешними экологическими факторами, и эндогенные, обусловленные внутренними, генетическими механизмами. Рассмотрим зависимость разрядной деятельности электрических рыб от различных экологических факторов.
Сезонная активность. Этапы развития и циклы жизни, а следовательно, и разрядная деятельность зависят от сезона года. Черноморский звездочет в течение всего года генерирует разряды, характеризующиеся небольшой длительностью: 60—200 мс — у самцов и 150—400 мс — у самок, с максимумом энергии в интервале 250—400 Гц. Летом, в период нереста, звездочет генерирует разряды большей длительности: до 30 с — у самцов и 15 с — у самок. В этих разрядах максимум энергии приходится на 125-250 Гц.
У ската морской лисицы электрические разряды в разные сезоны года тоже отличаются. У самок максимальный разряд обнаруживается во время нереста весной и летом, а минимальный — осенью и зимой; у самцов — максимальный летом и осенью, минимальный — весной. Электрический разряд у самок длится летом 7—8 с и состоит из нескольких тысяч импульсов (каждый продолжается менее 1 мс). Осенью длительность разряда самок не превышает 1,5 с, количество импульсов снижается до 15, а длительность импульса возрастает до 120 мс Частотный состав максимальных разрядов располагается в диапазоне от 100 Гц до 2,5 кГц, а минимальных — от 600 до 1000 Гц.
Электрическая деятельность морских так называемых неэлектрических рыб также носит сезонный характер. Летом и осенью рыбы совершенно не генерируют разряды (даже с помощью принудительной стимуляции). Зимой же многие виды этих рыб (горбыль, ставрида, налим и др.) часто излучают импульсы спонтанно в состоянии повышенной двигательной активности.
Суточная активность. Смена освещенности в течение дня и ночи вызывает значительные изменения в поведении рыб. У них обнаружены четкие изменения двигательной и звуковой активности в связи с суточным ритмом жизнедеятельности. Экспериментальные наблюдения в природных и лабораторных условиях показали, что время суток влияет и на разряды, генерируемые рыбами. У гнатонемуса (семейство мормирообразных) было установлено характерное изменение частоты разрядов в зависимости от времени суток: днем — 8—10 Гц, ночью — 15—20 Гц. Если рыб содержать при постоянной освещенности (5 лк) или в темноте, то спустя три дня этот ритм у них исчезает: частота разрядов в дневное время составляет 10—15 Гц, а в ночное — 10 Гц. Некоторое увеличение разрядной активности в дневные часы объясняется повышением звукового фона.
Американский исследователь А. Штейнбах вел наблюдения в природных условиях за песчаной рыбой (представителем подотряда гимнотовидных), обитающей в бассейне реки Амазонки Днем она зарывается в песок на дне, а активной становится после захода солнца. В зависимости от фаз активности частота появления разрядов песчаной рыбы значительно меняется. Высокая частота разрядов характерна для плавающей рыбы, а низкая — Для отдыхающей в песке.
Хотя изменения электрической активности четко совпадают с изменениями освещенности, исследователи считают, что свет оказывает на электрическую деятельность косвенное влияние. Медленное повышение частоты разрядов перед выходом рыб из песка начинается при отсутствии изменений в интенсивности света. Понижение частоты разрядов происходит до рассвета, когда рыбы снова зарываются в песок.
При искусственном цикле освещения «день — ночь» песчаные рыбы вели себя так же, как в природных условиях. При постоянном слабом искусственном освещении (в течение двух суток) периодичность изменений частоты разрядов сохранялась. Это свидетельствует о том, что электрическая активность песчаных рыб в основном обусловлена внутренним, эндогенным ритмом. Изменение частоты разрядов в какой-то отрезок времени может произойти под влиянием внешних факторов: резкого изменения освещенности, звука и других раздражителей. Дальнейшие опыты показали, что естественное изменение освещенности в течение суток, по-видимому, синхронизирует эндогенный ритм электрической активности песчаных рыб.
Следовательно, действие экологических факторов на электрическую активность рыб проявляется па фоне внутреннего, эндогенного, ритма. Различия, существующие в проявлении внешнего и внутреннего ритмов электрической активности у гнатонемуса (семейство мормирообразных) и песчаной рыбы (семейство гимнотовидных), связаны, по-видимому, с образом их жизни. У гимнотовидных реки Амазонки он такой же, как у ночных хищников. Это позволяет рыбам данной группы «выйти» из-под действия дневных хищников, «выработать» свой внутренний ритм поведения. Мормирообразные же экологически более связаны в своем поведении с другими хищными рыбами, потому определенная освещенность приобрела для них четкое сигнальное значение в проявлении их активности.
Совершенно другой ритм электрической активности характерен для гимнотовидных рыб, обитающих в реке Рио-Негро. Ночью они неактивны и рассредоточены по своим участкам на мелководьях вдоль берега. Днем рыбы становятся активными, покидают ночные участки и образуют стаи на глубинах 15—20 м на расстоянии около 100 м от берега. Наблюдения за электрической активностью этих рыб проводились в реке Рио-Негро при помощи портативных регистрирующих устройств (в которые входили электроды, транзисторный усилитель, магнитофон), установленных на специальных буях в разных участках реки. Дневную активность гимнотовидных реки Рио-Негро объясняют отсутствием дневных хищников.
Разрядная деятельность неэлектрических рыб также зависит от времени суток и изменения освещенности. Опыты, проведенные в 1968 г. американскими учеными Е. Бархамом, Р. Говди и другими, показали, что количество электрических импульсов, генерируемых тиляпиями, с наступлением ночи возрастает (от нескольких десятков в минуту в 18 ч дня до 2 тыс. к середине ночи). Увеличение числа импульсов ночью у верховки, красноперки, макроподов, вьюнов отмечали советские исследователи.
Влияние температуры на разрядную деятельность электрических рыб впервые обнаружено в опытах на электрическом соме. Длительность промежутка между электрическими залпами увеличивается с понижением температуры: при 32°— 1,5 мс; 22°— 3,2; 12°— 9,8 мс. У черноморского звездочета и морской лисицы при понижении температуры от 18—22 до 8 амплитуда напряжения уменьшается на 15—20 мкВ и снижается частотный состав разрядов. Изменения разрядной активности связаны не только с влиянием температуры на нервные центры, но и с непосредственным действием температуры на ткань электрических органов.
Частота и амплитуда разрядов обычно возрастают с повышением температуры. Однако увеличение частоты разрядов при повышении температуры идет только до определенной границы, после чего наблюдается обратный эффект. Морская лисица, относящаяся к холоднолюбивым рыбам, при 21° генерирует более частые разряды, чем при 25°
Изменяются в зависимости от температуры частота и длительность разрядов электрического сома. При увеличении температуры воды их длительность возрастает. Максимальная частота разрядов (600 импульсов в секунду) зарегистрирована у сома при температуре 29°.
Доказательство влияния температуры на характер разрядной деятельности через центральную нервную систему получил еще в 1910 г. немецкий ученый С. Гартен в опытах на электрическом соме. Избирательно охлаждая или нагревая только голову или туловище (место расположения электрических органов), Гартен отметил изменение количества разрядов. При охлаждении головы частота разрядов уменьшалась (хотя температура электрического органа оставалась неизменной), при нагревании — увеличивалась.
Однако температура влияет и непосредственно на ткани электрических органов рыбы. Разрядная деятельность гнатонемуса менялась по мере уменьшения и увеличения оптимальной температуры: при охлаждении воды до 13° и нагревании до 35° напряжение разрядов гнатонемуса уменьшалось, а продолжительность отдельных импульсов увеличивалась (ниже 13° и выше 35° электрическая деятельность практически не отмечалась). При оптимальной температуре 24—26° длительность импульса составляла 280—300 мкс, при 21° С — 800 мкс, при 16° С — 2,5 мс, т. е. увеличивалась почти в 8 раз.
Влияние температуры на разрядную деятельность черноморского звездочета изучал Н. А. Михайленко. Рыбу, выловленную из воды с температурой 20—22°, помещали в воду с температурой 8°. После получасовой адаптации рыбы к новым условиям производились замеры ее разрядов. Обнаружилось, что амплитуда разрядов звездочета уменьшалась на 15—20 мкВ по сравнению с нормой. В опытах при повышении температуры воды с 10 до 24° отмечалось увеличение амплитуды разрядов на 20— 25 мкВ.
Влияние солености. Электропроводность воды в природных условиях сильно варьирует в зависимости от количества содержащихся в воде солей. Чем больше их растворено в воде, тем выше ее электропроводность. Чтобы выяснить, как влияет соленость воды на разряды рыб, проводили специальные опыты на нильском слонике. Рыб помещали в воду с различной концентрацией поваренной соли и разным соотношением дистиллированной и аквариумной воды. Потом производили измерения параметров разряда испытуемых и контрольных рыб. Опыты проводили при температуре 26°.
Оказалось, что в воде с высокой электропроводностью амплитуда разрядов понижается по мере повышения концентрации солей. Форма импульсов при этом не меняет ся. Уменьшение электропроводности раствора (при добавлении дистиллированной воды) влияло на форму импульсов: амплитуда разрядов равномерно увеличивалась. В дистиллированной воде амплитуда разрядов резко понижалась.