6 years ago
No comment

Sorry, this entry is only available in
Russian
На жаль, цей запис доступний тільки на
Russian.
К сожалению, эта запись доступна только на
Russian.

For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

В природе нет химически чистой воды. Даже самые чистые природные воды — дождь и снег — содержат примеси, поглощаемые на пути к земле из воздуха. Текущая вода растворяет горные породы, по которым она протекает или сквозь которые просачивается. Воды много и в самой твердой коре планеты в свободном и в связанном состоянии. Водяные пары, выделяющиеся при извержении вулканов, позволяют думать, что вода есть и на значительной глубине в толще Земли, хотя пока трудно сказать, в какой форме и в каких объемах.

Вода — главная составная часть гидросферы — представляет собой окись водорода (Н2О); она состоит из 11,2% водорода и 88,8% кислорода. Морская вода содержит в своем растворе многие соли (об этом подробнее будет рассказано ниже) и газы — кислород, азот, углекислый газ. Вода способна при колебаниях температур принимать различные состояния: жидкое, твердое и газообразное. При переходе из одного состояния в другое поглощается или освобождается большое количество тепла. Вода как физическое тело имеет ряд аномалий, объясняемых строением ев молекул и очень сложной структурой. Так, при нагревании пресной воды от 0 до 4°С плотность воды растет, а затем при увеличении температуры уменьшается. Вторая аномалия — увеличение объема при замерзании примерно на 10%. Лишь немногие вещества а твердой фазе легче, чем в жидкой,— это висмут, галлий, германий и др. Для воды характерны и такие аномалии, как очень большая теплота плавления и парообразования, высокая теплоемкость и др. Есть еще ряд любопытных аномалий. Так, аномальна привычная для всех температура кипения, равная 100°: ведь водород кипит при 253°, а кислород при 180°С.

Количество солей в морской воде невелико по сравнению с ее массой, но соли весьма существенно изменяют физические и химические свойства воды. Ее состав определяется с помощью химического анализа взятых проб (эти опыты стали проводить в 60-x годах прошлого столетия) вначале па поверхности, а затем и на различных глубинах, вплоть до придонных участков. Уже первые исследования показали (а последующие их подтвердили), что вдали от берегов состав морской воды везде одинаков — как па поверхности, так и на глубине. Это постоянство сохраняется весьма длительное время, измеряемое геологическими эпохами.

Количество растворенных твердых минеральных веществ (солей), выраженное в граммах на килограмм морской воды, называется ее соленостью. Тысячные доли целого называются промилле и обозначаются значком %о. В открытых частях океанов соленость равна в среднем 0,035 кг, т. е. средняя соленость Мирового океана 35°/оо. Морская вода имеет горько-соленый вкус, обладает большим удельным весом, чем пресная, не растворяет мыло, образует накипь в паровых котлах. Все это происходит оттого, что в морской воде растворены твердые минеральные вещества, причем в разных количествах — некоторые в граммах на килограмм воды, а иные — только в тысячных долях грамма па топну воды. Но именно последняя группа микроэлементов наиболее многочисленна. В то же время соленость морской воды определяется преобладающими по весу элементами. Химический состав морской воды, полученный из анализов проб, взятых в трех океанах еще во время плавания на «Челленджере», следующий (табл. 2).

T_2

Эта таблица, составленная английским химиком Дитмаром в 1878—1882 гг., по утратила в целом своего значения и сейчас.

Установлено, что соли, растворенные в морской воде, распадаются (диссоциируют) па ионы: катионы, заряженные положительно (атомы водорода и металлов), и анноны, заряженные отрицательно (кислотные и водные остатки). Поэтому в настоящее время солевой состав морской воды иногда представляют не в виде солей, а к виде попов. Возвращаясь к последней таблице, обратим внимание па то, что относительное содержание солей остается одинаковым (в %) как при повышении, так и при понижении солености. Это — очень важное для практики свойство: зная содержание лишь одной составляющей, например хлористых соединений, можно легко рассчитать остальные. Любопытно, что состав человеческой крови имеет точно такое же процентное соотношение входящих в нее элементов, как и морская вода.

Уже первые исследования показали, что из числа известных химических элементов 32 встречается в воде океанов и морей. Несмотря па незначительное содержание микроэлементов в 1 т воды сумма (учитывая гигантский общий объем океанических вод) получается весьма внушительной. Так, содержание золота в 1 т воды меньше 0,005 мг, а в Мировом океане в целом его несколько миллиардов тонн! Специально нужно выделить соединения азота, фосфора и кремния — они играют решающую роль в жизнедеятельности морских организмов. Невелико по количеству содержание в морской воде растворимых в ней газов. Некоторые вещества в морской воде находят лишь косвенным путем: йод — в водорослях, медь и серебро — в коралловых известняках, и т. д.

Воды океанов постоянно пополняются пресной водой, стекающей в пего с суши береговыми потоками и реками,— примерно 30—40 тыс. км3 в год. Эти воды тоже содержат некоторое количество веществ в растворе. Но соотношение солей в океанах и реках различно. Так, хлоридов в речной воде 5,2%, сульфатов 9,9, карбонатов 60,1 и прочих веществ 24,8%. Казалось бы, при таком преобладании карбонатов в речной воде, оно должно было увеличиваться и в морской. Но этого не происходит, так как они легко выпадают в осадок, активно поглощаются морскими организмами для построения раковин, панцирей, скелетов, коралловых рифов п целых островов. Считают, что для того, чтобы увеличить количество хлоридных попов в океане всего на О,О2°/оо понадобилось бы 200 тыс. лет.

Сравнивая состав морской и речной воды, легко увидеть, что хлористые соединения, преобладающие в морской воде, в очень малом количестве представлены в речной. В то же время в речной воде больше половины карбонатов. Значит, соли океана внесены в него не реками, они другого происхождения, окончательно еще не установленного. По этому вопросу существует несколько предположений. Сохраняя общее процентное соотношение солей, соленость вод океанов изменяется в значительных пределах как в океане в целом, так и в каждом его районе и даже точке. Эти изменения зависят от испарения с поверхности, осадков, вертикального перемешивания п горизонтальных переносов воды, таяния льдов и выноса пресных речных вод. Когда происходит испарение, то в пар превращается только пресная вода, а оставшаяся в океане становится еще более соленой. Унесенные ветром водяные пары потом вновь попадают на поверхность океана (и суши), теперь уже распресняя его. Одновременно с испарением наблюдается и другой физический процесс — ветер уносит не только «пресный» пар, но и морские брызги па материк. При этом убыль солей равна примерно 300—400 млн. т (при объеме осадков на материках 100 тыс. км3).

Морской лед также в основном пресный — рассол постепенно стекает из него вниз, осолоняя поверхностный слой воды. Весной происходит обратный процесс, если лед тает на месте и не выносится. Небольшие реки распресняют воду лишь у устья, крупные — далеко в море.

Системы крупных океанических течений — таких, как Гольфстрим и Куросио, — нарушают распределение солености, принося в высокие широты соленые воды пассатных областей.

Изменение солености происходит в вертикальном направлении — ветер постоянно перемешивает поверхностные воды (примерно до 100 м), конвекция, являющаяся результатом осолонения пли охлаждения поверхностных вод, ведет к изменениям солености до глубин в 1 тыс. м.

Если же взглянуть на изменения солености с исторических позиций, то выясняется, что большое значение имели ледниковые периоды — во время оледенений соленость Мирового океана постепенно возрастала, максимум наступал в конце этих периодов. В послеледниковые периоды из-за таяния льдов соленость уменьшалась. Очень медленные изменения солености океанических вод связаны с поступлением и потерей солей, приходящих в океан из рек, недр Земли, атмосферы. Это все пополнение. Убыль же солей происходит от выпадения в осадок па дно (например, в районах Кара-Богаз-Гол или Сиваш), испарения, выноса па сушу ветром, пропитывания грунтов и др. Следует заметить, что в океан из атмосферы солей поступает всего в 2,5—3 раза меньше, чем приносят воды суши.

Соленость океана различна на глубине и на поверхности и может сильно отклоняться от средней величины, особенно в морях (в Красном — от 8 до 42%о). В открытых же частях океана пределы колебания невелики — от 32 до 37%о. Можно заметить общие черты в распределении солености на поверхности Мирового океана, связанные с географической широтой, т. е. с общим распределением испарения и осадков. Минимум солености приходится на высокие широты (малое испарение, обильные осадки, таяние приносных льдов). Чем ближе к пассатным зонам, тем соленость выше, и у тропиков (25° с. ш. и 20° ю. ш.) она максимальна (большое испарение из-за постоянных ветров, ясная погода). В направлении к экватору соленость несколько уменьшается.

Из океанов самый соленый Атлантический, его соленость достигает 37,5%о — абсолютный максимум на поверхности открытого океана. Немного ниже соленость Тихого океана, предельно она равна 36,5%о. Это общее зональное распределение солености нарушают мощные океанические течения.

Распределение солености в глубинах океана отличается от поверхностного по ряду причин, одна из которых состоит в том, что распределение солености на глубине определяется ее плотностью. Например, распресненные, менее плотные поверхностные воды в высоких широтах создают устойчивость, а это значит, что па глубинах может и не быть малой соленость. Различная соленость на поверхности и на глубине связана также с глубинными течениями. Известно, что на горизонте 75—150 м в экваториальной зоне Тихого и Атлантического океанов поверхностные воды подстилаются слоем очень соленой воды (более 36°/оо), принесенной с запада глубинными экваториальными противотечениями Кромвелла и Ломоносова, открытыми сравнительно недавно. Следовательно, по современным представлениям, соленость на глубинах открытого океана изменяется по-разному. Однако удалось установить некоторые общие черты. Так, заметные колебания обнаруживаются лишь в верхнем слое — до глубин 1500 м. А ниже, в слое «стратосферы» океана, колебания солености чрезвычайно малы. Часто нижний предел находится значительно выше, например в полярных областях он равен всего 200 м. При всем разнообразии вертикального распределения солености ученым удалось выделить несколько характерных типов.

Колебания солености в открытых частях океанов во времени невелики — годовые не превышают 1%о. В глубине соленость почти постоянна и лежит в пределах точности измерений.

Таким образом, соленость — одна из консервативных характеристик режима всех океанов, и наблюдения ее позволяют распознавать природу различных процессов. В частности, благодаря измерениям солености в Тихом океане сделан вывод о движении вод течения Кромвелла. Подобные же исследования были проведены в 1963 г. при изучении движения средиземноморских вод в Атлантическом океане от Гибралтара до Британских островов. Обнаружилось, что соленые средиземноморские воды создают слой от 800 до 1500 м, простирающийся до юга Англии.

Существенную роль играют также газы и взвешенные вещества, растворенные в морской воде, хотя содержание их незначительно. Это кислород, азот, углекислота, иногда водород. Значение их велико для организмов, населяющих толщу вод. Кислород, захваченный из воздуха поверхностным слоем воды, проникая на глубину, указывает на интенсивную вертикальную циркуляцию. Кислород появляется в морской воде и в результате фотосинтеза морских растений, главным образом фитопланктона. Кислород расходуется на дыхание морских организмов, окисляется и частично возвращается в атмосферу при пересыщении. Известен случай, когда вода Азовского моря была пересыщена кислородом да 350%. В целом кислород, несколько уменьшаясь с глубиной, распространен. в океане довольно равномерно, и лишь в некоторых областях на глубинах 400—500 м его почти нет.

Азот в поверхностных слоях океана состоит в почти полном равновесии с азотом атмосферы. На глубине количество азота определяется образованием и распадом органического вещества.

Сероводород возникает па дне моря в результате распада органического вещества и деятельности некоторых бактерий. Сероводород, заражая глубинные слои воды, делает ее непригодной для существования животных и растений. В частности, этим отличается Черное море, в котором лишь 13% вод не заражено сероводородом.

В морской воде содержится относительно малое количество углекислоты, по значение ее очень велико и не уступает кислороду. Углекислота необходима для построения органического вещества, с пей связана коррозия металлов и разрушение бетона.

Соленость обязательно учитывается в портостроительных работах. Она определяет ташке грузовую марку торговых судов, особенно работающих на трассах с резкими переходами морских и пресных вод. Очень важно знать соленость для рыбной и химической промышленности. Воды морей и океанов могут обеспечить сырьем стекольную, фармацевтическую и другие виды промышленности, дать удобрения и неограниченное количество пресной воды.