7 років тому
Немає коментарів

Sorry, this entry is only available in
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.

В больших спиральных галактиках, наподобие той, в которой мы живем, полная масса звезд составляет около 100—200 млрд. масс Солнца. Если разделить это число на вероятный возраст галактик (10—20 млрд. лет), то мы получим среднюю скорость образования звезд из газа за всю историю галактики, которая рав­на 5—20 солнечных масс в год. Однако темп звездо­образования постепенно уменьшается со временем, по­этому сейчас в большинстве случаев он составляет для большинства спиральных галактик 1—5 массы Солнца в год. А несколько молодых звезд в год — это не так уж много.

Молодые звезды образуются неодинаково часто по всей галактике. Темпы звездообразования зависят от расстояния от центра галактики примерно так, как показана на рис. 6. Хотя молодые звезды могут присут­ствовать (в небольшом количестве) вблизи центра га­лактики, подавляющее большинство их связано со спи­ральными ветвями. Образования звезд за пределами оптически наблюдаемых ветвей практически не происходит, несмотря на то что в ряде галактик там найден межзвездный газ.

Зависимость темпов звездообразования от расстояния от центра галактики

Зависимость темпов звездообразования от расстояния от центра галактики

Темп звездообразования отличается и для различ­ных типов спиральных галактик. В галактиках Sa он, как правило, меньше, чем в галактиках Sc. Обычно в спиральных ветвях Sa-галактик не наблюдается отдель­ных голубых звезд или ярких областей Н II — они там не только реже встречаются, но и слабее по светимости (последнее пока представляет собой загадку).

Чтобы понять, как происходит рождение звезд в га­лактиках, важно выяснить, откуда же появляются спи­ральные ветви и почему звезды возникают преимущест­венно в них?

Если взглянуть на фотографии некоторых спираль­ных галактик, то может показаться, будто вся галакти­ка, кроме небольшой части в центре, состоит из спи­ралей. Но такое впечатление ошибочно. Проведя спе­циальные измерения, можно убедиться, что даже в га­лактиках с хорошо развитой структурой светимость спиральных ветвей (и в особенности масса) составляет небольшую часть от светимости (или массы) всей га­лактики. Выделяются же они на общем звездном фоне потому, что в спиралях собраны самые яркие объекты галактик: горячие звезды с температурой, на по­верхности 20—30 тыс. градусов, скопления молодых звезд, звездные ассоциации и массивные газовые обла­ка, ярко флюоресцирующие под действием ультрафио­летового излучения горячих звезд. Звезды с большой светимостью и высокой температурой живут гораздо меньше, чем «обычные» звезды типа нашего Солнца. Поэтому мы наблюдаем их только недалеко от мест, где они родились. Их концентрация в спиральных вет­вях говорит о том, что ветви в галактиках — это вы­тянувшиеся длинной цепочкой или полосой области, где происходит величественный процесс зарождения звезд. Правда, известны галактики, где мы видим молодые звезды, а спиральных ветвей у них нет. В таких га­лактиках, как правило, много межзвездного газа. По­хоже, что спиральные ветви просто облегчают и уско­ряют образование звезд, делая этот процесс эффектив­ным, даже когда остается мало необходимого для него «сырья» — межзвездного газа.

Спиральная форма ветвей может быть связана с вращением галактик. Это вращение таково, что его угловая скорость уменьшается с расстоянием от цент­ра галактики. Отсюда следует, что отдельные части га­лактики обегают вокруг галактического центра с раз­личными периодами, и если чем-нибудь выделить во вращающемся диске достаточно большую область, то уже меньше чем через один оборот она превратится в сегмент спирали.

Представим теперь себе, что в нескольких областях в плоскости галактики газ уплотнился и возникли оча­ги звездообразования. Тогда дифференциальное враще­ние галактики очень быстро (если можно назвать быст­рым процесс, идущий десятки миллионов лет) «разма­жет» каждую такую область в сегмент — «обрывок» спиральной ветви. И действительно, «обрывки» спи­ральных ветвей в некоторых галактиках наблюдаются. Наверное, они есть в каждой звездной системе, где оча­ги звездообразования могут растягиваться дифферен­циальным вращением. Но это не решение проблемы, по­скольку во многих галактиках спиральные ветви заве­домо не сегменты. Их удается проследить на протяже­нии одного и даже более оборотов вокруг ядра. Толь­ко процесс, охватывающий значительную часть всей галактики, способен привести к образованию спираль­ных ветвей.

Быть может, спиральные ветви — это просто выбро­сы вещества из центра галактики? Но, во-первых, спи­ральные ветви далеко не всегда «дотягиваются» до центра (в галактиках с перемычкой они, например, от­ходят от нее под прямым углом), а, во-вторых, вещест­во спиральных ветвей (звезды, межзвездный газ) вра­щается вокруг центра галактики по орбитам, близким к круговым, а не движется радиально, как можно было бы ожидать в случае выброса. К тому же, выбросы долж­ны происходить часто, чтобы можно было объяснить широкую распространенность спиральных галактик.

В таком случае спиральные ветви, может быть, представляют собой изогнутые трубки сравнительно плотного межзвездного газа, в котором образуются звезды? Наблюдения нейтрального межзвездного водо­рода не противоречат такому предположению, но что может удерживать газ в таких трубках, почему он не разлетится во все стороны? Собственное гравитацион­ное поле газа удержать его не может: действие грави­тации приведет лишь к тому, что газовая трубка ра­зобьется на отдельные конденсации и разрушится. Да и дифференциальное вращение галактики быстро растя­нет трубку, пока она через 1—2 оборота не «закрутит­ся» совсем. Так что таким путем спиральные ветви объяснить не удается.

Тогда, может быть, в состоянии спасти трубку газа от разрушения магнитное поле? Но и на этом пути встречаются большие трудности: чтобы спиральная ветвь-трубка вращалась как целое, необходимо иметь магнитное поле с плотностью энергии, в несколько сот раз большей соответствующей величины для поля в межзвездном газе нашей Галактики. Вряд ли это воз­можно: такое поле привело бы к легко обнаруживае­мым эффектам, и его присутствие тем или иным путем выдало бы себя.

Решение (единственное ли?) проблемы существова­ния спиральных ветвей удалось найти на ином пути, рас­сматривая их не как сплошные трубки, а как области, где особенно близко друг к другу располагаются орбиты звезд, вращающихся вокруг центра галактики (на­пример, так, как показано на рис. 7). Спиральные вет­ви с этой точки зрения являются лишь уплотнениями в звездном диске, которые не включают в себя все время одни и те же объекты, а перемещаются по диску га­лактики, не перенося с собой вещества, как не перено­сят его волны, распространяющиеся по поверхности воды.

Схематическое изображение возможной ориентации звездных орбит в галактике

Схематическое изображение возможной ориентации звездных орбит в галактике

Первым, кто начал разрабатывать подобный подход к объяснению природы спиральных ветвей, был швед­ский математик Б. Линблад. Начиная с 1960-х годов, теория спиральных ветвей как волн плотности стала быстро развиваться благодаря новому гидродинамиче­скому подходу к вопросу распространения волн плотно­сти, заимствованному из плазменной физики. Этот под­ход был применен к изучению волн сжатия со спираль­ным фронтом, распространяющихся в газо-звездном диске галактики. Согласно волновой теории образова­ния спиральных ветвей дифференциальное вращение галактики не должно разрушать спиральную структу­ру, так как в отличие от звездного диска спиральный узор вращается с постоянным периодом, подобно рисунку на твердой поверхности волчка. При этом и звез­ды, и газ движутся относительно спиральных ветвей, периодически проходя через фронт волны. На движе­ние звезд такое прохождение сказывается мало: их плотность в спиральной ветви становится лишь чуть-чуть (на несколько процентов) выше. Иное дело — меж­звездный газ. Его можно рассматривать как сплошную, легко сжимающуюся среду, плотность которой при про­хождении через «гребень» волны должна резко возра­стать. Здесь и кроется ответ на вопрос о том, почему спиральные ветви — место рождения звезд. Ведь сжа­тие межзвездного газа способствует его быстрой кон­денсации в облака, а затем и в звезды.

Процесс прохождения газа через спиральную ветвь неоднократно рассматривался теоретически. Результаты расчетов показывают, что, когда газ «входит» в спи­ральную ветвь, его плотность и давление резко возра­стают (в некоторых случаях возникает ударная волна), и происходит быстрое разбиение газа на две фазы: плотную, но холодную (облака) и разреженную, но с температурой 7—9 тыс. градусов (межоблачная среда). Если масса облаков велика — несколько сотен масс Солнца, то внешнее давление горячей среды может сжать их настолько, что облака станут гравитационно неустойчивыми и смогут сжиматься (до образования звезд). Одновременно и независимо действует и другой механизм увеличения плотности газа. Он связан с тем, что межзвездный газ в магнитном поле галактики об­разует неустойчивую систему. Газовые облака как бы «соскальзывают» по силовым линиям магнитного поля, опускаясь к самой плоскости звездного диска — в так называемые «потенциальные ямы». Там они скаплива­ются и сливаются в большие газовые комплексы, где и происходит образование звезд. Эти комплексы газа, нагретые звездами, и создают клочковатый вид спира­лей в галактиках, богатых межзвездным газом.

Появившиеся в результате этих процессов звезды продолжают свое движение по галактике с теми ско­ростями, которыми обладал породивший их газ, и по­степенно — за десятки миллионов лет — выходят из спиральной ветви. Но за это время самые яркие звез­ды уже успевают постареть и перестают излучать мно­го энергии («погаснут» и газовые облака, светившиеся благодаря этим звездам). Поэтому мы почти всегда наблюдаем яркие звезды и горячий межзвездный газ именно в спиральных ветвях, а не по всей галактике. Более того, эти объекты (а также темные «прожилки» пыли, появление которых, по-видимому, связано со сжа­тием газа) концентрируются не просто к спиральным ветвям, а к их внутренней стороне — как раз там, где, согласно волновой теории, ожидается «вхождение» газа в волну уплотнения и его сжатие.

После прохождения спиральной ветви межзвездный газ вновь становится разреженным — один атом на не­сколько кубических сантиметров пространства. Через фронт волны проходят новые массы газа, возникают новые очаги звездообразования.

Вывод о том, что спиральные ветви галактик мо­гут быть образованы волнами плотности, находит свое подтверждение и в расчетах (с помощью быстродейст­вующих ЭВМ) движения большого количества матери­альных точек, имитирующих звезды и газ галактиче­ского диска. Эти расчеты показали, что газ в своем движении действительно может образовывать ярко выраженную спиральную структуру.

При объяснении природы спиральных ветвей волно­вая теория встретилась с серьезной проблемой: волны плотности оказались не «вечными». Они должны мед­ленно затухать и исчезли бы, просуществовав не бо­лее 1 млрд. лет, если не возбуждались бы вновь или не поддерживались бы каким-либо источником энергии. Поэтому перед учеными встала еще одна задача: вы­яснить, каков источник или, лучше сказать, механизм возбуждения волн плотности?

Таких механизмов было предложено несколько, од­нако, какой из них играет основную роль в галактиках, пока неясно. Возбудить волны может и взаимодейст­вие двух звездных подсистем галактик, если одна вра­щается быстро, а другая — медленно (звездный диск и сфероидальная составляющая галактики), и гравитаци­онная неустойчивость межзвездной среды на периферии галактик, и неосесимметричное распределение масс, часто наблюдаемое вблизи центра галактик, а также, возможно, выбросы из ее центрального ядра.

Вообще говоря, как волны на воде или звуковые волны в воздухе можно возбуждать большим количе­ством способов, так и волны плотности в галактиках могут возбуждаться самыми различными путями — ре­зультат будет один: спиральная структура.

Окончательная проверка правильности волновой тео­рии происхождения спиральных ветвей галактик, види­мо, является делом недалекого будущего. Но пока еще наши знания о природе спиральных ветвей далеко не полны и все предположения и расчеты еще нуждаются в подтверждении. Да и форма спиральных ветвей ча­сто слишком сложна, чтобы считать их математически правильной спиралью. Ветви могут быть и широкими и узкими, отклоняться от формы спирали, сливаться, разветвляться, соединяться перемычками, образовывать несколько независимых «ярусов» и т. д. (Б. А. Ворон­цов-Вельяминов среди тысяч спиральных галактик об­наружил и ряд таких, две ветви которых словно бы закручиваются в разные стороны!). Объяснить это мно­гообразие форм пока не удается. Наконец, в некоторых звездных системах спиральные ветви имеют явно не­волновую природу, хотя их форма, видимо, все же связана с вращением галактики. Это относится не толь­ко к спиральным «обрывкам» внутри галактик. Извест­но немало случаев, когда спиральные ветви… выходят за пределы самих галактик! Широкие и неяркие, они тянутся неровной полосой, подчас на многие десятки тысяч световых лет через периферийные области звезд­ных систем, уходя в межгалактическое пространство. Наблюдаются они почти исключительно там, где есть две или несколько так называемых взаимодействующих галактик. Один из пионеров изучения взаимодейству­ющих галактик — Б. А. Воронцов-Вельяминов обнару­жил большое количество близких друг к другу галак­тик, одна или две из которых обладают странными меж­галактическими ветвями, не всегда спиральными по своему виду (рис 8). Подобные ветви в некоторых случаях могут появиться при действии на звезд­ную систему гравитационного поля соседней галактики. Внешнее гравитационное поле может изменить внут­реннюю структуру галактики (ведь все ее вещество движется под влиянием сил гравитации). Когда к га­лактике подходит другая массивная звездная система, возникают силы, стремящиеся разрушить галактику. Но чаще всего до полного разрушения дело не доходит. Часть звезд отрывается от основного тела галактики и при определенных условиях может образовать одну или две «струи», искривляющиеся из-за того, что звез­ды до этого вращались вокруг центра галактики. Получаются спирали из оторванных от галактики звезд. Если звездная система не окружена достаточно плот­ной газовой средой или не имеет размер, много боль­ший, чем предполагают сейчас, то судьба таких спира­лей проста — пройдут сотни миллионов лет и спирали исчезнут: входящие в них звезды «упадут» назад или навсегда покинут галактику. Правильность подобных представлений подтверждается расчетами взаимодейст­вия звездных систем, проводившимися на ЭВМ.

Схематическое изображение некоторых характерных форм взаимодействующих галактик

Схематическое изображение некоторых характерных форм взаимодействующих галактик

Но вот что удивительно: можно найти такие галак­тики, у которых внешние ветви «стыкуются» с обычны­ми спиральными ветвями. Значит, возбуждение волн плотности может быть связанным с внешним воздейст­вием. Получается, что одна галактика может на рас­стоянии влиять на образование звезд (а значит, и пла­нет) в другой, соседней галактике (Есть основания полагать, что наша Галактика также несет следы взаимодействия с соседними системами — БМО и ММО. Австралийские радиоастрономы обнаружили длинный и узкий, пе­ресекающий более чем полнеба «рукав» разреженного холодного нейтрального водорода, связанный с этими двумя соседними галак­тиками. Звезд в газовом рукаве пока не обнаружено, но они могут быть и слишком слабыми, чтобы их там можно было различить как отдельные точки.).