5 лет назад
Нету коментариев

Изучение режима морских льдов представляет большой интерес при изучении данного водного объекта в целом. Появление и таяние льдов существенно сказывается на сезонном ходе тепло­вого режима водных масс как прямым путем (в результате затраты тепла на их таяние и высвобождения тепла при их образовании), так и косвенным (в результате изменения условий теплообмена океана с атмосферой при их появлении). При наличии ледового покрова существенно меняется и радиационный режим на поверхности, уменьшается количество солнечного тепла, поглощаемое океаном.

Велико и прикладное значение изучения режима морских льдов, существенно влияющих на условия плавания,

Имеющийся материал специальных и попутных наблюдений за морскими антарктическими льдами позволяет составить ясное представление о их режиме, хотя и не все районы Южного океа­на, покрывающиеся морским плавучим льдом, в настоящее время изучены одинаково подробно. Наименее изученными в этом отношении пока являются моря Уэдделла и Беллинсгаузена. Связано это с их очень тяжелым ледовым режимом. А это объясняется особенностями расположения береговой черты по отношению к преобладающим течениям и ветрам, приводящим к сжатию льдов. Эти моря и расположены ближе других к полюсу.

Сопоставляя условия образования и деформации морских плавучих льдов в Арктике и Антарктике, обнаруживаем существенное различие, влияющее на режим льдов, толщину, возраст, форму, расположение и плотность морского ледового покрова.

Основное различие этих условий заключается в том, что в Северном Ледовитом океане льды находятся под воздействием ветров, направленных с берегов окружающих его материков к центральным областям океана, что делает типичными условия торошения ледового покрова, увеличение возраста льдов.

Ветры, дующие с берегов Антарктиды, и общая циркуляция вод Южного океана в зоне образования морского ледового покрова создают условия разрежения льдов, выносят их на все уве­личивающиеся по кругам широт океанические просторы, где господствуют условия, способствующие быстрому их разрушению (рис. 14). Поэтому плавучие льды Антарктики — это в основном молодые 1—2-годичные льды сравнительно небольшой толщины, сильно заснеженные на поверхности. Для ледового покрова здесь типичны большие полыньи. Ледяные поля Антарктики, не под­вергающиеся сжатию, больше ледяных полей Арктики. Торосистый и паковый лед практически отсутствуют.

Границы распределения плавучих льдов и айсбергов

Границы распределения плавучих льдов и айсбергов

Таковы общие условия для образования льдов в Антарктике, но в отдельных морях они иные. Так, например, в море Уэдделла конфигурация береговой черты, связанная с выступом Антаркти­ческого полуострова, в сочетании с генеральным направлением дрейфа льдов создают условия для сжатия ледового покрова, задерживают его вынос в открытые части океана. Это приводит к увеличению возраста льдов моря Уэдделла, увеличению толщины и появлению форм, свойственных для условий сжатия. Такие условия являются все же исключением для Антарктики.

Основное движение плавучих льдов происходит в направлении на запад и северо-запад. Движению в северном направлении у берегов материка способствуют выступающие мысы, оконечности шельфовых ледников, а на некотором расстоянии от них циркуляция воздуха, соответствующая цепочке циклонов — областей пониженного давления атмосферы, расположенной вокруг Антарктиды. Поэтому морской лед в весенне-летний и осенний периоды за пределами неподвижного покрова — припая — располагается не сплоченной полосой вокруг материка. Кромка льда в это время представляет собой выступы, далеко уходящие в открытый океан в северо-западном направлении, и области чистой воды, распространяющиеся далеко в сторону материка.

Лед в водах Антарктики обычно начинает появляться в марте. Наибольшее развитие ледяного покрова наблюдается в сентябре— октябре. К этому времени кромка льда занимает самое се­верное положение. В различных областях океана это положение не одинаково и зависит как от теплового, так и от динамического режимов атмосферы и океана в этих областях. Среднее положение кромки льдов приблизительно совпадает с 53° ю. ш. Ширина пояса льдов в этот период изменяется в различных секторах океана от 360 миль в проливе Дрейка до 1300 миль в районе моря Уэдделла. Такое существенное изменение ширины покрова морских льдов связано не только с изменением положения его границы на севере, но и с конфигурацией береговой черты материка, ее асимметрией относительно географического полюса, наличием выступов и заливов.

Максимальная площадь, занимаемая морскими льдами Южного океана, равна 19 млн. км2.

Интенсивное таяние льдов и разрушение ледяного покрова в Антарктике начинается в ноябре. Отступление кромки льдов на юг особенно стремительно во второй половине декабря. По от­дельным наблюдениям кромка льдов в это время отступала за сутки на 5—12 миль.

В конце февраля кромка льдов занимает свое наиболее южное положение. В это время в большинстве участков побережья полоса льдов не превышает 50 миль, а в отдельных местах они разрушаются вплоть до берега. Льды разрежены, а порой к берегам простираются полосы чистой воды. Сплоченный лед наблюдается только в отдельных массивах, где ширина ледового покрова достаточно велика даже в это время года. В этот период площадь ледяного покрова составляет около 2,5 млн. км2. Итак, площадь, занятая льдами зимой, примерно в 7 раз больше, чем летом, а количество льда летом в 10 раз меньше, чем зимой.

Для оценки условий теплового и динамического взаимодействия Южного океана с атмосферой интересны также следующие цифры. В зимних условиях площадь Южного океана, покрытая льдами, составляет 24,4% всей его площади. В летних условиях эта цифра уменьшается до 3,4%. Кроме всего, это показывает, что основное количество льдов, образовавшихся за осенне-зимний период, тает в теплую половину года. Этим и объясняется то, что для вод Антарктики типичен молодой (годовалый и меньшего возраста) лед. Двухлетние и более старые льды наблюдаются в небольшом количестве и только в определенных областях, вблизи берега у западной стороны заливов и восточной стороны мысов и шельфовых ледников.

В настоящее время предложена следующая схема дрейфа антарктических льдов, согласующаяся с циркуляцией вод и полем ветра. В непосредственной близости от берегов Антарктиды льды движутся в основном на запад, отклоняясь к северу, в зависимости от расположения береговой черты. Продвинувшись достаточно далеко на север, они попадают в зону действия Антарктического кругового течения, на границу распространения антарктических холодных вод, и в этих условиях быстро разрушаются еще до того, когда восточные ветры циклонических циркуляции атмосферы с океана могли бы увлечь их в обратное движение на юг.

Установлено также, что в Южном океане вдали от берегов и над большими глубинами направление дрейфа льдов отклоняется в среднем на 30° влево от направления ветра, скорость же дрейфа составляет 1/50 от скорости действующего на лед ветра. Можно также считать, что средняя скорость дрейфа льдов в Антарктике равна 2 милям в сутки.

Припай, т. е. относительно неподвижная часть ледового покрова, расположенная в непосредственной близости от берега, имеет, как и весь ледовый морской покров в Антарктике, специфические черты. Относительно неподвижным припай называют потому, что в нем не исключены вертикальные перемещения в результате проникновения под лед ветровой волны и зыби, в результате приливно-отливных колебаний уровня. Строго говоря, припай в морях с приливами не соединен с берегом жестко. Приливные колебания создают вдоль берега одну или несколько приливных трещин, края которых перемещаются друг относительно друга в вертикальном, и незначительно в горизонтальном, направлениях. Возможны некоторые горизонтальные перемещения за счет трещин и полыней во всей полосе припая. Однако в среднем общее положение припая, особенно в холодную часть года, остается неизменным по отношению к берегу материка.

Припай, устанавливающийся вначале в бухтах и заливах и затем распространяющийся в море, достигает в условиях Антарктики ширины, не превышающей 25—35 км. Сроки установления его различны и зависят не только от температуры воды, но и от наступления периодов затишья, когда молодой припай не разрушается ветром. В среднем для Антарктики это совпадает с серединой апреля.

После установления припая толщина его начинает расти: снизу за счет замерзания воды на нижней границе и всплывающих кристаллов внутриводного льда, возникающего в результате пе­реохлаждения морской воды у берегов, сверху за счет выпадающего на поверхность и смачиваемого в результате прогиба покрова морской водой снега.

Толщина припая к концу зимы в среднем достигает 150 см, а в зоне, где он растет, за счет выпадения снега несколько большей толщины. Структура припайного льда слоиста. Соленость, как и соленость всех плавучих льдов Антарктиды, выше солености морских льдов Арктики, что связано с большей соленостью вод Южного океана.

Разрушение припая начинается в среднем для всего побережья в конце октября — начале ноября. Основной причиной разрушения припая являются не тепловые процессы, а динамические: волнения, ветер, приливное колебание уровня.

Мы уже говорили, как существенно меняется радиационный баланс, обусловливающий величину прихода тепла, в зависимости от вида поверхности. Поэтому следует сказать несколько слов о полыньях в ледовом покрове Южного океана.

В этом покрове наблюдается два основных вида полыней. Это заприпайные полыньи, образующиеся у кромки припая в результате постоянных «отжимных» ветров, дующих с берега конти­нента. Ширина их зависит от скорости берегового ветра и условий обламывания кромки припая. Условия для образования заприпайной полыньи существуют вокруг всей Антарктиды, но это не значит, что такая полынья располагается непрерывным кольцом. Ширина ее меняется и в пространстве и во времени. В зимнее время, в результате большого контраста температур воздуха и открытой поверхности воды, в области таких полыней возникает своеобразный микроклимат, охватывающий толщину атмосферы до 200 м с температурой воздуха, превышающей температуру его над сплошным ледяным покровом на 1—5° С. Летом открытые пространства воды в полынье становятся местом прихода большого количества солнечного тепла, в результате чего в таких полыньях начинается более интенсивное таяние льда.

Второй вид полыней — это пространства чистой воды среди дрейфующих льдов на большем, чем кромка припая, расстоянии от берега. Возникновение этих полыней объясняют особенностями атмосферной циркуляции, связанной с цепочкой циклонов, разделенных узкими гребнями высокого давления. Различия взаимодействия океана с атмосферой над такими полыньями и над окружающими их дрейфующими льдами не столь велики по контрасту перехода температур, как в условиях заприпайной полыньи. Но в этом случае главную роль начинают играть большие площади полыней. Наблюдения показывают, что расположения полыней в какой-то мере связаны с траекторией циклонов в зимнее время. Одним словом, и те и другие полыньи играют большое значение в процессах теплового и динамического взаимодействия атмосферы и океана в Антарктике.