6 лет назад
Нету коментариев

Атмосфера — наиболее подвижная, динамичная часть географической оболочки. Это объясняется, во-первых, ее газообразным состоянием, во-вторых, спецификой ее теплового режима. Атмосфера нагребается преимущественно снизу, от земной поверхности, поэтому в ней часто возникают вертикальные, а следовательно, и горизонтальные движения.

Тепловые машины. В механическую энергию атмосферных движений переходит 1—2 % усваиваемой земной поверхностью солнечной энергии. Переход осуществляется в процессе работы так называемых тепловых машин. Разработка идеи о тепловых машинах географической оболочки принадлежит советскому ученому академику В. В. Шулейкину. Тепловой машиной называют систему, в которой тепловая энергия превращается в механическую. Каждая тепловая машина состоит из двух основных элементов нагревателя и холодильника, которые связываются между собой потоком вещества — теплоносителя. Благодаря разности температур теплоноситель перемещается от нагревателя к холодильнику, а вместе с ним переносится и теплота, часть теплоты при этом расходуется на движение теплоносителя.

Наиболее крупной тепловой машиной в географической оболочке является система экватор — полюсы. Ее называют тепловой машиной первого рода. С ней связаны наиболее масштабные движения в атмосфере. Различия в нагревании материков и океанов приводят к возникновению тепловых машин второго рода. С ними связывают возникновение муссонов в умеренных и субтропических широтах. Однако существуют и другие представления о природе возникновения муссонов.

В географической оболочке существует множество других тепловых контрастов: внутренний водоем — окружающая его суша, горы — равнины, ледники — поверхности без льда и т. д. В каждом таком случае можно говорить о своего рода тепловой машине, в которой происходит преобразование части тепловой энергии в механическую.

Коэффициент полезного действия тепловых машин в географической оболочке невелик. Это объясняется как небольшой разницей температур нагревателей и холодильников, так и большими потерями энергии на теплообмен с окружающей средой. Возникновение движения воздуха в атмосферных тепловых машинах рассмотрим на упрощенном примере.

Как известно, давление в любой точке атмосферы равно весу вышележащего столба воздуха. При равномерном нагревании земной поверхности и атмосферы изменение давления с высотой происходит одинаково во всех точках, что можно изобразить с помощью изобар (линий, соединяющих точки с одинаковым атмосферным давлением), проведенных на вертикальном разрезе атмосферы (рис. III. 6, а). Поступление дополнительного тепла в точку В приведет к расширению воздуха и к подъему изобар вверх (рис. III. 6, б). Это не вызовет изменения давления у земной поверхности, однако в атмосфере возникнет разность давления по горизонтали, причем горизонтальный барический градиент будет направлен в сторону точки А. Перенос воздуха в этом направлении на высоте приведет к увеличению массы воздуха над точкой А, а следовательно, и к увеличению давления воздуха в этой точке (т. е. на уровне земной поверхности). Теперь уже у земной поверхности возникает барический градиент, но направленный в противоположную сторону, т. е. к точке Б (рис. III. 6, в). Соответственно в этом направлении начнется перенос воздуха у земной поверхности.

Схема возникновения элементарной конвективной ячейки

Схема возникновения элементарной конвективной ячейки

Таким образом в теплых районах у земной поверхности возникают области пониженного давления, в холодных — повышенного, а на высоте — наоборот. Так образуются замкнутые вертикальные конвективные ячейки (кольца) циркуляции — элементарные тепловые машины.

Крупномасштабные вертикальные кольца циркуляции наблюдаются в низких широтах. В экваториальной зоне воздух поднимается вверх. В верхней тропосфере он направляется в сторону тропиков в виде антипассата. На широте 30—35° происходит опускание воздуха, откуда он направляется к экватору в виде пассата (см. рис. III. 8). Это вертикальное кольцо циркуляции было названо ячейкой Гадлея в честь английского ученого XVIII в., изучавшего пассатную циркуляцию. В наше время выяснилось, что пассаты и антипассаты связаны не только с процессами в вертикальных конвективных ячейках, т. е. с процессами термической природы, но и с динамическими процессами. Подробнее этот вопрос разбирается на занятиях по метеорологии и климатологии.

Основные закономерности атмосферной циркуляции. Совокупность движений атмосферного воздуха образует атмосферную циркуляцию. Основа ее возникновения — неравномерное распределение тепла в атмосфере, т. е. термический фактор. Возникающие движения преобразуются далее под влиянием отклоняющей силы вращения Земли (силы Кориолиса), трения о земную поверхность и ряда других факторов и приобретают сложную структуру.

Общее представление о закономерностях движений воздуха можно получить на основе анализа среднего многолетнего распределения атмосферного давления и преобладающих ветров у земной поверхности в январе и июле (см. Физико-географический атлас мира, с. 40—41). В распределении атмосферного давления проявляются две основные закономерности: с одной стороны, зональность, с другой — влияние материков и океанов. Зональность четко прослеживается на рис. III. 7, где приведена осредненная по широте величина атмосферного давления. Наблюдается чередование зон высокого и низкого давления. В области экватора давление ниже, чем в окаймляющих его тропических и субтропических областях. Высокое давление в этих поясах сменяется низким в умеренных и субполярных широтах. К полюсам происходит небольшое увеличение давления. Соответственно такому распределению давления формируется система ветров (см. Физико-географический атлас мира, с. 40—41). От субтропической области высокого давления в сторону экватора направлены пассаты, отклоняющиеся от градиента давления под действием силы Кориолиса и приобретающие восточную составляющую. В умеренных широтах господствующий перенос — западный, в полярных— восточный. Следует подчеркнуть, что это — осредненная картина, которая полностью совпадает с реальным распределением лишь в отдельные моменты. Изменчивость и непостоянство — характерные черты атмосферной циркуляции.

Зональное распределение атмосферного давления в январе и июле

Зональное распределение атмосферного давления в январе и июле

Не следует думать, что в природе существует простая причинная цепь: неоднородность в распределении тепла — распределении давления — распределении ветров. В общем виде такая последовательность возникновения цепи физических воздействий действительно наблюдается, однако реальное распределение трех названных характеристик зависит от их взаимодействия между собой и со многими другими факторами. Например, исходное распределение тепла мы связываем обычно с поступлением солнечной радиации на земную поверхность. Оно создает термическую неоднородность и тем самым обусловливает возникновение разности атмосферного давления, а следствием последней является ветер. Ветер, возникнув как результат перечисленных выше факторов, сам становится мощным фактором, воздействующим на первые два. Воздушные массы переносят тепло, влагу, минеральные соли и тем самым перераспределяют энергию на поверхности Земли. Последнее в свою очередь вызывает перераспределение атмосферного давления и системы ветров. На эти процессы влияет облачность — мощный регулятор радиационного и теплового обмена между земной поверхностью, атмосферой и космическим пространством. В результате картина настолько усложняется, что однозначно невозможно определить цепь причинно-следственных событий.

В средних и высоких широтах перенос воздуха в больших масштабах осуществляется в виде вихревых потоков — циклонов и антициклонов. Циклон — движущаяся восходящая система потоков воздуха, образующих спираль, закручивающуюся в южном полушарии по часовой стрелке, в северном — против часовой стрелки. Поэтому в северном полушарии при перемещении циклонов с запада на восток (это доминирующее направление движения циклонов в широкой полосе от 40 до 80° широты) в передней части циклона происходит перенос воздуха с юга на север, в тыловой — с севера на юг. В южном полушарии наблюдается аналогичный процесс с той лишь разницей, что в передней части наблюдается заток воздуха с севера на юг, в тыловой — с юга на север. Одновременно в циклонах осуществляются вертикальные движения — в центральной части циклона воздух поднимается вверх.

В антициклонах воздух движется по спирали от центра, где наблюдается высокое давление. Одновременно происходит опускание воздуха над центром антициклона.

В циклонах и антициклонах формируются особые погоды. На территории, занятой циклоном, наблюдается низкое давление, как правило, выпадают атмосферные осадки, происходит резкая смена направления и скорости ветра. Для антициклонов характерно высокое давление, чаще всего малооблачная устойчивая погода без осадков.

Распространение циклонов и антициклонов на земной поверхности характеризуется определенными закономерностями. В областях преимущественного распространения циклонов на климатических картах вырисовываются минимумы давления (Физико-географический атлас, с. 40—41), в областях распространения антициклонов — максимумы давления. Соответственно минимумам и максимумам распределяются атмосферные осадки (там же, с.42— 43). Увеличение осадков в циклонах связано с поднятием воздуха на атмосферных фронтах. В процессе поднятия воздух охлаждается. При определенной температуре происходит конденсация или сублимация содержащегося в воздухе водяного пара. Образовавшиеся водяные капли или кристаллы льда при достижении достаточных размеров падают на земную поверхность. В антициклонах воздух опускается, сжимается, благодаря этому нагревается и удаляется от точки насыщения.

В экваториальной зоне вследствие малых значений силы Кориолиса (sin ф составляет один из множителей в выражении, определяющем эту силу) циклоны и вообще вихревые системы не образуются. Большое количество атмосферных осадков в этой зоне связано с конвективным поднятием воздуха.

Таким образом, основные (фоновые) закономерности распределения атмосферных осадков связаны с характером циркуляционных процессов. Карта атмосферных осадков позволяет увидеть множество деталей в их распределении, связанных с влиянием рельефа и других факторов.

На рис. III. 8 дана схема общей циркуляции атмосферы с учетом основных типов движения в атмосфере (пассатов, вихревых систем, восточных ветров в полярных районах и вертикальных колец). В целом циркуляция атмосферы складывается из зональных, меридиональных и вертикальных движений. Зональные движения (вдоль параллелей) преобладают. Они на порядок интенсивнее меридиональных и на два порядка — вертикальных. Хотя меридиональные движения и слабее зональных, их значение велико. Меридиональные потоки осуществляют межширотный обмен воздуха. Именно благодаря меридиональному переносу (который имеет место и в океане) реальное распределение температуры на земной поверхности менее контрастное, чем солярное, — теоретически рассчитанное по радиационному переносу энергии (табл. III. 1).

Схема общей циркуляции атмосферы

Схема общей циркуляции атмосферы

Вертикальные движения (их главные потоки изображены на рис. III. 8 в виде колец) сильно уступают горизонтальным движениям по интенсивности. Однако они также играют исключительно важную роль, поскольку без них вообще была бы невозможна циркуляция атмосферы.

T_3_1

Типы атмосферной циркуляции. В отдельные периоды соотношение между зональными и меридиональными потоками в атмосфере меняется. Соответственно этому исследователи выделяют несколько типов атмосферной циркуляции, которые можно свести к двум основным — широтному (зональному) и меридиональному.

При широтном типе циркуляции контрасты между низкими и высокими широтами возрастают, а погодные условия характеризуются сравнительно слабой изменчивостью. При меридиональном типе циркуляции обмен воздушными массами между теплыми и холодными районами обусловливает резкую изменчивость погоды, а вследствие этого — и резкую изменчивость всего комплекса физико-географических процессов.

Типы атмосферной циркуляции постоянно сменяют друг друга. Однако в течение нескольких, следующих друг за другом лет (до 15) часто наблюдается преобладание (иногда весьма четко выраженное) одного типа циркуляции. Причина чередования типов не совсем ясна. Возможно, что она связана с солнечной активностью. Высказываются предположения и о существовании в атмосфере (лучше сказать в системе атмосфера — океан — земная поверхность) собственных ритмов.

В последние 15—20 лет на земном шаре отмечено учащение экстремальных явлений погоды (сильные засухи и одновременно исключительно дождливые сезоны, частые ураганы, жестокие морозы и др.). Некоторые ученые связывают их с деятельностью человека, все в более широких масштабах воздействующего на природную среду. Другие считают, что они обусловлены преобладанием в современную эпоху меридионального типа циркуляции (один из этапов колебания климата), вызывающего экстремальные процессы в атмосфере вследствие более активного обмена холодных полярных и теплых тропических масс воздуха.

В атмосфере наблюдаются также местные циркуляции — движения воздуха, связанные с формами рельефа, ледниками, взаимодействием суши и водоемов и другими факторами. Они получили название горно-долинных, склоновых и ледниковых ветров, бризов, фенов и др. Их роль в перераспределении на земной поверхности тепла, влаги и других параметров также значительна, хотя и имеет локальный характер.

Однако, несмотря на постоянные переносы воздуха, в целом ат-мосфера сохраняет состояние, близкое к равновесному. Все переносы связаны между собой и образуют гигантский атмосферный круговорот. Механическая энергия атмосферы постепенно рассеивается и превращается в теплоту, которая затем преобразуется в длинноволновое излучение и направляется в Космос или к земной поверхности. Другая часть механической энергии передается океану при трении воздушных масс о водную поверхность.

Если бы поступление солнечной энергии не возобновляло термическую неоднородность земной поверхности, атмосферная циркуляция вскоре бы прекратилась (примерно за две недели). Еще быстрее это произошло бы на невращающейся Земле при отсутствии силы Кориолиса. Однако непрерывное поступление солнечной радиации к Земле приводит к постоянному воспроизведению основных элементов циркуляции.