4 роки тому
Немає коментарів

Sorry, this entry is only available in
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.

Физиология, биологическая и биофизи­ческая химия тесно соприкасаются с теоретической биологией, поскольку совместно с ней решают вопрос о био­химических критериях и физиолого-биохимической сущности жизни. Именно к этой общей области указан­ных наук относятся излагаемые ниже закон химического состава живого вещества, и закон си­стемной организации биохимических процессов. В основе этих законов лежит предложенное Энгельсом определе­ние: «Жизнь — это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекра­щается и жизнь».

Энгельс не считал свое определение исчерпываю­щим, и рассматривая физиолого-биохимическую сущ­ность жизни, мы должны расширить рамки этого опре­деления с учетом более поздних обобщений и формули­ровок, учитывающих последующее развитие науки в этой области.

ЗАКОН ХИМИЧЕСКОГО СОСТАВА ЖИВОГО ВЕЩЕСТВА, ИЛИ ПЕРВЫЙ ЗАКОН ЭНГЕЛЬСА

  1. Материальную основу живых тел составляют органические соединенияуглерода,которые в про­цессе жизнедеятельности организма претерпевают биохимические превращения. Суть этих превраще­ний — процессы ассимиляции и диссимиляции, т. е, в конечном счете построение живого тела из посту­пающих извне питательных веществ и разложение органических веществ с выделением энергии, ис­пользуемой в процессах жизнедеятельности. Сово­купность ассимиляции и диссимиляции составляет обмен веществ организма, или его метаболизм.
  2. В обмене веществ фундаментальная роль принадлежитбелкам-ферментамкак катализато­рам и регуляторам биохимических реакций. Кроме того, белки выполняют структурообразующие, дви­гательные, транспортные, иммунологические и энер­гетические функции.
  3. Биосинтез белков происходит при участиинуклеиновых кислот,полимерная структура кото­рых определяет порядок чередования аминокислот в молекулах синтезируемых белков. Обладая спо­собностью к передаче генетической информации, нуклеиновые кислоты играют уникальную роль в явлениях наследственности, биосинтезе белка и ин­дивидуальном развитии организма. Наряду с бел­ками нуклеиновые кислоты составляют первоосно­ву жизни.
  4. Помимо белков и нуклеиновых кислот, в жи­вом теле присутствуют многие другие органические соединения, в частностилипидыи углеводы, несу­щие особые структурообразующие и энергетические функции, а также универсальный накопитель хими­ческой энергии — аденозинтрифосфорная кислота (АТФ). Из неорганических веществ живого тела особое значение имеет вода, в отсутствие которой жизнедеятельность невозможна.

Определяя жизнь как форму существования белко­вых тел, Энгельс тем самым подчеркнул уникальную роль белков в качестве биохимической первоосновы жиз­ни. В настоящее время общеизвестно, что белки-фермен­ты катализируют и регулируют биосинтез всех органи­ческих веществ, образуемых в клетке, и всех других про­исходящих в ней биохимических процессов. Белки со­ставляют структурную основу органоидов клетки, обус­ловливают раздражимость клетки и другие проявления жизнедеятельности.

Определяя физиолого-биохимическую сущность жиз­ни, современные ученые называют в качестве ее перво­основы, помимо белков, нуклеиновые кислоты — ДНК и РНК. Такое дополнение вполне обоснованно, поскольку, как выяснилось, нуклеиновым кислотам принадлежит определяющая роль в биосинтезе белков и передаче на­следственных свойств. Таким образом, материальную Первооснову жизни составляют высокоспецифичные по­лимерные вещества — белки и нуклеиновые кислоты, образующие вместе с другими компонентами элементарную структурно-функциональную единицу жизни — клетку.

Очевидно, следует различать материальную первоос­нову жизни и живое вещество в целом. В первом случае имеются в виду ключевые химические компоненты кле­ток, определяющие процессы биосинтеза и репродукции, а во втором — вся совокупность клеточного и межкле­точного вещества живого тела.

В структурно-функциональной организации клетки роль липидов связана в основном с их участием в фор­мировании плазматических мембран, на поверхности которых протекают биохимические процессы, а также в образовании запасов питательных веществ. Различные углеводы выполняют метаболические функции, являют­ся первичными продуктами фотосинтеза, запасным пи­тательным веществом, составляют значительную часть биомассы растений, входя в состав клеточных оболо­чек. Что касается АТФ, то это вещество, присутствую­щее в каждой живой клетке, играет центральную роль в энергетическом обмене. Другие органические компо­ненты живого вещества не имеют столь универсального значения и поэтому специально не названы.

Включение воды в состав живого вещества объясня­ется тем обстоятельством, что она содержится как обя­зательный компонент в любом живом теле. Это та среда, в которой протекают биохимические процессы. Кроме того, как химический реагент вода участвует в гидроли­зе органических веществ, фотосинтезе и других процес­сах. В водном растворе происходит ионизация неоргани­ческих веществ, участвующих в биохимических реакци­ях. Содержание воды в клетке составляет обычно 60— 80% и более, что обусловливает также механические свойства живого тела.

Уникальность органических соединений углерода, особенно белков и нуклеиновых кислот, обусловливает всеобщий характер закона химического состава живого вещества.

ЗАКОН СИСТЕМНОЙ ОРГАНИЗАЦИИ БИОХИМИЧЕСКИХ ПРОЦЕССОВ, ИЛИ ЗАКОН БЕРТАЛАНФИ

  1. Любой организм представляет собой откры­тую, неравновесную,самообновляемую,саморегу­лируемую, саморазвивающуюся, самовоспроизводящуюся активную систему. Протекающие в ней био­химические процессы характеризуются пространст­венно-временной упорядоченностью и направлены на самообновление и воспроизведение системы а целом.
  2. Открытостьживой системы проявляется в ее обмене веществом, энергией и информацией с окру­жающей средой. Неравновесность живой системы выражается в ее неизбежном изменении.
  3. Самообновляемостьживой системы заключа­ется в постоянной замене разрушаемых веществ живого тела вновь синтезируемыми. Этот процесс обеспечивает самосохранение системы. Саморегу­лируемость выражается в поддержании в живом теле условий, необходимых для ее самосохранения.
  4. Способность живой системы ксаморазвитиюи самовоспроизведению, как и любые другие ее свойства, подконтрольна действию естественного отбора. Она определяет структурно-функциональ­ную организацию живого тела, его общебиологи­ческие и конкретные свойства, обеспечивающие са­мосохранение биологических систем в их индиви­дуальном и историческом развитии.
  5. Непосредственные причины, определяющие способность живой системы к саморазвитию и са­мовоспроизведению, — структурно-функциональные особенности нуклеиновых кислот и белков, старе­ние и обновление живого тела, процесс обмена ве­ществ в целом.
  6. Активностьживой системы проявляется в ее избирательности по отношению к внешним источ­никам питательных веществ, энергии и информа­ции, в раздражимости (активной, в частности дви­гательной, реакции на внешние воздействия), в об­разовании адаптивных ферментов, иммунологичес­ких реакциях, активных формах поведения.
  7. Превращение веществ в живом теле выража­ется в многоступенчатых каталитических процес­сах, которые образуют линейные и разветвленные цепи, замкнутые циклы и сети биохимических реак­ций живого тела. Упорядоченность системы этих реакций обеспечивается механизмами генетическо­го контроля метаболизма путем индукции и репрес­сии биосинтеза ферментов. Наряду с этим — пространственнойразделенностьюбиохимических реак­ций в клетке, регуляцией активности ферментов пу­тем изменения концентрации субстратов, активато­ров и ингибиторов, мультиферментной организацией многоступенчатых реакций, гормональной и нейро-гуморальной регуляцией ферментативного катали­за. Функционирование этих системно-регуляторных факторов метаболизма, действующих в основном по принципу обратной связи, подчинено сохране­нию и развитию организма как целого. Если первый закон Энгельса характеризует субстан­циональные, вещественные свойства живой материи, то закон Берталанфи касается функциональных особенно­стей живых тел, наиболее общих свойств тех физиолого-биохимических процессов, которые в них протекают. Вслед за Людвигом фон Берталанфи (1901—1972), рас­сматривая организм как открытую систему, мы прежде всего имеем в виду, что для ее существования необхо­дим обмен со средой веществом и энергией. В связи с этим напомним некоторые общие представления и фак­ты.

К питательным веществам автотрофных организмов относятся неорганические соединения, главным образом СО2, ионы аммония, азотной, фосфорной кислот, калия, кальция, натрия, соединения, содержащие так называе­мые микроэлементы, необходимые в сравнительно не­больших количествах (Fe, Mg, Mn, В, Сu, Zn и др.). Ос­новную группу автотрофных организмов составляют зе­леные растения. Энергетическим источником для них служит световая энергия Солнца. Поэтому их называют также фототрофными организмами. Кроме зеленых рас­тений, к ним принадлежат сине-зеленые водоросли и фотосинтезирующие бактерии. Особую группу автотрофных организмов составляют хемотрофные бактерии, которые получают энергию в процессе превращения неорганиче­ских соединений.

Для питания гетеротрофных организмов нужны орга­нические соединения: белки, жиры, углеводы, витамины. Эти организмы, как и автотрофные, нуждаются также в неорганических соединениях калия, кальция, натрия и микроэлементов. К гетеротрофным организмам принад­лежат все животные, грибы и многие микроорганизмы.

Надо отметить, что белки, жиры и сложные углево­ды в пищеварительном тракте животных под действием ферментов расщепляются на составные части — амино­кислоты, жирные кислоты, моносахариды, которые и по­ступают в кровь. Из этих соединений в клетках организ­ма происходит биосинтез веществ живого тела. Энерге­тическим источником для гетеротрофных организмов служит химическая энергия питательных веществ, под­вергаемых в организме биологическому окислению.

У большинства животных и растений биологическое окисление происходит при участии молекулярного кис­лорода, в котором нуждаются все аэробные организмы. У них процесс биологического окисления происходит в форме дыхания. Существуют, однако, обширные группы организмов, у которых источником кислорода для био­логического окисления являются органические кислород­содержащие соединения, главным образом углеводы, В этом случае биологическое окисление происходит в фор­ме брожения, сущность которого раскрыл Луи Пастер. Организмы, не нуждающиеся в свободном кислороде, называют анаэробными. К ним принадлежат многие микроорганизмы и некоторые паразитические животные. Следует иметь в виду, что биологическое окисление без участия молекулярного кислорода как звено метаболиз­ма происходит и в аэробных организмах. Кроме того, имеются факультативные анаэробы, у которых в зависи­мости от условий биологическое окисление происходит тем или иным способом.

Основной источник азота для гетеротрофных орга­низмов — белки, для автотрофных — соли азотной кис­лоты и аммония. Однако некоторые микроорганизмы способны к усвоению молекулярного азота. К ним отно­сятся клубеньковые бактерии, азотобактер, азотфиксирующие сине-зеленые водоросли.

Необходимость поступления в организм воды, оче­видно, не нуждается в комментариях. Обезвоживание организма часто приводит к смерти. Однако многие ви­ды выдерживают значительное обезвоживание, сохраняя жизнеспособность. Такое состояние, при котором жизне­деятельность резко затухает, но жизнеспособность со­храняется, называют анабиозом. Помимо обезвожива­ния, состояние анабиоза может вызвать понижение тем­пературы. Анабиозу подвержены микроорганизмы, рас­тения умеренного и холодного климата, многие живот­ные как беспозвоночные, так и позвоночные. У многих видов анабиоз — нормальный этап жизненного цикла. Это биологическое приспособление к перенесению небла­гоприятных для жизнедеятельности условий (например, зимой) или к распространению в пространстве (напри­мер, в форме спор или семян).

В понимании системной организации биохимических процессов важное место принадлежит принципу регули­рования на основе обратной связи. Под обратной связью понимают воздействие результатов функционирования системы на характер этого функционирования. В биохи­мических процессах обратная связь выражается в воз­действии продуктов реакции на ход этой реакции. Осо­бое значение в живых системах имеет отрицательная обратная связь, ослабляющая течение биохимического процесса под действием его продукта. Отрицательная обратная связь стабилизирует функционирование систе­мы, делает ее работу устойчивой.

Следует, однако, иметь в виду, что устойчивость био­химической системы организма неабсолютная. Напротив, такую систему можно характеризовать как находящую­ся в состоянии устойчивого неравновесия. Один из вид­ных теоретиков биологии, советский и венгерский уче­ный Э. С. Бауэр (1890—1942), сформулировавший прин­цип устойчивого неравновесия живых систем и постро­ивший на нем концепцию теоретической биологии, пи­сал: «Всем живым существам свойственно прежде все­го самопроизвольное изменение своего состояния, т. е. изменение состояния, которое не вызвано внешними при­чинами, лежащими вне живого существа…» (Бауэр, 1935. — С. 22).

Закон системной организации биохимических процес­сов логически связан с рассмотренными ранее законами биологической эволюции и индивидуального развития организма, так как системная организация познается исходя из принципа развития. Пониманию этого закона должен способствовать также анализ генетико-кибернетической сущности жизни, к которому мы переходим в следующем разделе.