Індивідуальний розвиток організму
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.
Изучение индивидуального развития организма — задача эмбриологии, возрастной физиологии, биологии развития, геронтологии. В настоящее время происходит формирование молекулярной биологии развития. Накопленный в ней фактический материал служит основанием для различных теоретических выводов. Однако общебиологическая теория индивидуального развития на уровне молекулярных закономерностей еще не сформулирована. Поэтому мы ограничимся общебиологическими законами индивидуального развития организма, открытыми до наступления эпохи молекулярных исследований.
В этом разделе представлен закон онтогенетического старения и обновления, или закон Кренке, трактующий вопрос о неизбежности старения и смерти и общебиологическом характере процессов обновления, обеспечивающих непрерывность жизни. Рассмотрим также закон целостности онтогенеза, или закон Дриша. Полностью отвергая витализм Дриша, мы по справедливости должны признать роль немецкого ученого в открытии этого закона. Постараемся дать ему материалистическое толкование, используя для этого современные представления о системно-регуляторных факторах развития организма. Одна из важных проблем индивидуального развития — проблема эволюции онтогенеза, или соотношения онтогенеза с филогенезом. Не касаясь существа этой проблемы, подчеркнем ее значение как важного связующего эвена между различными разделами теоретической биологии.
ЗАКОН ОНТОГЕНЕТИЧЕСКОГО СТАРЕНИЯ И ОБНОВЛЕНИЯ, ИЛИ ЗАКОЛ КРЕНКЕ
- Жизнь любого организма конечна в своей продолжительности. Продолжительность жизни определяется наследственностью и условиями существования организма. Поступательное движение организма к естественной смерти, к прекращению индивидуального существования обусловлено егостарением,проявляющимся в ослаблении, угасании жизнедеятельности.
- Жизнь вида в отличие от жизни индивида потенциально не ограничена во времени и при неизменном сохранении благоприятных условий его существования может продолжаться как угодно долго. Непрерывность жизни вида обеспечивается воспроизведением его особей. Поступательное движение к репродукции, процессы, обеспечивающие репродукцию,составляют поэтому важнейшую для вида, сторону индивидуального развития организма.
- Эта сторона индивидуального развития обусловлена процессамиобновления,протекающими в организме. Основные проявления процессов обновления — это новообразование живого вещества, деление клеток, морфогенез, процессы регенерации, оплодотворение.
- Процессы обновления противоположны процессам старения. Противоречивое единство этих процессов составляет основу индивидуального развития организма.Навосходящей ветви возрастной кривой преобладает обновление, на нисходящей — старение.
- Различные факторы среды могут способствовать или противодействовать старению и соответственно противодействовать или способствовать обновлению. Поэтому в индивидуальном развитии организма проявляется неоднозначность егокалендарногои физиологического возраста. Различные клетки, ткани и органы многоклеточного организма могут различаться по собственному возрасту, на который накладывается также общий возраст организма в момент их образования. Разновозрастность особенно ярко видна на метамерных органах растений.
- Возрастные изменения этих органов, отражающие взаимосвязь старения и обновления, проявляются в морфологических, физиологических и биохимических изменениях, носящих закономерный характер. Это дает возможность по соответствующим возрастным признакам выявлять предшествующие условия развития организма, прогнозировать на ранних стадиях его скороспелость и другие наследственные особенности, обусловленные темпами старения и обновления.
Закон онтогенетического старения и обновления представляет собой общебиологическую формулировку основных положений теории циклического старения и омоложения растений советского ботаника Николая Петровича Кренке (1892—1939). В этом законе мы заново изложили общебиологическое содержание концепции Кренке, не отклоняясь, однако, от ее идейно-теоретической сути.
Закономерности возрастной изменчивости растений, выявленные Кренке путем применения разработанных им количественных методов морфологического анализа развития побега (см. возрастную кривую на рис. 3), объясняются исходя из диалектико-материалистического понимания развития как непрерывного отмирании старого и возникновения нового. В основе теории Кренке лежит представление материалистической диалектики, согласно которому, по словам Энгельса, «отрицание жизни по существу содержится в самой жизни», и жизнь должна рассматриваться «в отношении со своим необходимым результатом, заключающемся в ней постоянно в зародыше, — смертью».
Существует около 200 гипотез о сущности старения. Многие из них представляют лишь исторический интерес. Например, гипотезы, сводящие процесс старения к самоотравлению организма, к израсходованию запаса ферментов или иных веществ. В настоящее время широким признанием пользуются представления, согласно которым в основе старения лежат молекулярные механизмы — деструкция (нарушение целостности) ДНК в процессе поступательного движения организма к естественной смерти. Однако в соответствии с приведенным законом, опирающимся на теорию Кренке, процесс старения сопряжен с процессом обновления. Поэтому процессу деструкции ДНК в онтогенезе должен противостоять соизмеримый с ним процесс репарации, восстановления ДНК.
Общебиологический характер закона онтогенетического старения и обновления заставляет сделать заключение, что репарация ДНК под действием репарационных ферментов представляет собой не частное явление. Она имеет фундаментальное значение в ходе индивидуального развития, обусловливая процессы обновления и задерживая старение организма.
В многоклеточном, особенно животном, организме процессы старения и обновления носят ярко выраженный системный характер. Они не исчерпываются изменениями в клетках, а в значительной степени обусловлены возрастными изменениями структурных элементов, составляющих более высокие уровни организации живого (ткани, органы, организм в целом). В этом проявляется целостность онтогенеза.
Закон онтогенетического старения и обновления раскрывает одну из важных сторон биологического содержания понятия времени, выражаемого, в частности, в продолжительности жизни индивида. В современной биологии понятие времени имеет такое же фундаментальное значение, что и в физике. Биохимические реакции, передача нервного возбуждения, ритм работы сердца, фазы и стадии индивидуального развития, смена биоценозов, этапы эволюции — любой процесс, происходящий в живой природе на молекулярном и клеточном уровнях, на уровне отдельного органа, индивидуума, популяции, биогеоценоза и биосферы в целом, характеризуется вполне определенной продолжительностью. Временные характеристики живых систем выражаются и в таких явлениях, как биоритмы, обусловленные наследственными особенностями живых объектов и внешними условиями. Временные (темпоральные) характеристики биологических объектов и процессов — важный количественный признак. Их изучает хронобиология (хроногенетика, хронофизиология, хроноэкология). На стыке биологических и геологических наук находится геохронология, определяющая древность и продолжительность периодов развития органического мира.
Для формирования хронобиологии принципиальное значение имеют представления В. И. Вернадского, в частности, изложенные им в конце 1931 г. на общем собрании Академии наук СССР в докладе «Проблема времени в современной науке». Вернадский вывел проблему времени за традиционные рамки физики и поставил ее как широкую естественнонаучную и философскую проблему, имеющую непосредственное отношение также к геологии, биологии и другим областям естествознания. Тем не менее и по сей день философы, за немногим исключением, анализируя содержание понятия времени, рассматривают лишь физическую интерпретацию проблемы и почти не учитывают ее химический, биологический, геологический, космогонический аспекты.
В современной физике, особенно в популярных работах, широко признается принципиальная и даже техническая возможность создания так называемой машины времени, позволяющей совершить путешествие в отдаленное будущее. Представление о «путешествии во времени» выдвигается при этом как неизбежное следствие из теории относительности, созданной Альбертом Эйнштейном и подтвержденной в ходе развития теоретической и экспериментальной физики XX в. Как утверждают физики-теоретики, на космическом корабле, движущемся с околосветовой скоростью, длительность промежутков времени между двумя любыми событиями по «земными и «ракетным» часам связана простой формулой:
где Т — промежутки времени, v — скорость движения ракеты относительно Земли, с — скорость света.
Основываясь на этой формуле, философ М. В. Мостепаненко писал: «Слетав к туманности Андромеды с ускорением 3 g, путешественник, вернувшийся на Землю, постареет на 20 лет, что не так уж много! Но на Земле за это время пройдет более полутора миллионов лет!».
Распространяя на человеческий организм так называемый парадокс часов, философ упустил из виду, что в вышеприведенной формуле, как и в теории относительности в целом, речь идет о физическом времени. А биологическое время отнюдь не тождественно физическому, что вытекает из закона онтогенетического старения и обновления, не только утверждающего неравнозначность физиологического и календарного возраста организма, но и категорически отвергающего веру в возможность его бессмертия, столь охотно принимаемую людьми, далекими от биологии.
С хронобиологической точки зрения более правомерно было бы рассмотреть влияние изменения течения физического времени в ракете, движущейся с околосветовой скоростью, на жизнедеятельность и темпоральные характеристики космического путешественника не непосредственно, а через изменение экологических факторов в корабле, таких, как температура или фоновая интенсивность ионизирующей радиации. Если бы физики указали, как изменятся за счет релятивистских эффектов эти факторы в космическом корабле, то была бы возможность смоделировать в реальных экспериментах биологическую сторону указанного фантастического путешествия. Впрочем, для этого даже не потребовалось бы проводить специальные эксперименты, так как характер зависимости человеческого организма от указанных факторов известен. При этом нет, конечно, никаких оснований считать, что изменение этих или каких-либо других факторов позволит существенно увеличить продолжительность жизни космонавта за пределы, определяемые его наследственностью и генетическим радикалом вида. Непосредственное выведение биологических закономерностей из физических может приводить к серьезным ошибкам, что и произошло в вопросе о «машине времени».
Утверждая идеи системного подхода в современной науке, Л. Берталанфи подчеркивал, что вербальная (словесная) модель исследуемой системы лучше, чем отсутствие какой-либо модели или чем математическая модель, искажающая реальность. Именно такой моделью, искажающей реальность, оказалась вышеприведенная формула при распространении ее на биологические явления. В этой связи уместно привести слова А. А. Ляпунова, отметившего, что рациональная трактовка количественных вопросов невозможна, пока должным образом не рассмотрены вопросы качественные.
ЗАКОН ЦЕЛОСТНОСТИ ОНТОГЕНЕЗА, ИЛИ ЗАКОН ДРИША
- Целостность организма — его внутреннее единство, относительная автономность,несводимость его свойств к свойствам отдельных его частей, подчиненность частей целому — проявляется в течение всех стадий онтогенеза. Таким образом, онтогенез представляет собой упорядоченное единство последовательно чередующихся состояний целостности. В целостности индивидуального развития проявляется органическая целесообразность.
- Целостность онтогенеза базируется на действиисистемно-регуляторных факторов: цитогенетических, морфогенетических, морфофизиологических, гормональных,а у большинства животных также нейрогуморальных. Эти факторы, действуя по принципу обратной связи, координируют ход развития и жизнедеятельность организма как активного целого в тесной связи с условиями окружающей среды.
- Свойство целостности имеет количественное выражение, неодинаковое для представителей разных видов, для разных особей, стадий и состояний организма. У растений целостность, как правило, выражена в меньшей степени, чем у животных. В процессе регенерации, т. е. восстановления утраченных частей или восстановления организма из части, целостность возрастает. Усложнение организации в процессе онтогенеза и филогенеза, усиление координирующей функции системно-регуляторных факторов организма означают возрастание целостности.
- Филогенетические изменения суть изменения целостных онтогенезов, протекающие в условиях воздействия естественного отбора на системно-регуляторные факторы. Поэтому свойство целостности сохраняется организмами не только в их индивидуальном, но и историческом развитии. Изменения, разрушающие целостность, отметаются отбором.
Закон теоретической биологии, который в истории науки связан с именем немецкого эмбриолога Ганса Дриша (1867—1914), гласит, что индивидуальное развитие организма есть целостный процесс и будущее состояние каждого развивающегося элемента есть функция его положения в целом. Конкретизируя и развивая в свете научных данных эту формулировку (в противовес ее идеалистической трактовке в витализме), мы и приходим к закону целостности онтогенеза — к закону, дающему материалистическое толкование одной из самых сложных сторон индивидуального развития организма.
Обращаясь к истории открытия этого закона, отметим, что им обусловлен принцип корреляции, установленный Кювье и позволивший этому ученому реконструировать по отдельным остаткам строение многих ископаемых животных в целом. С этим же законом связано явление коррелятивной изменчивости, на которое обратил внимание Дарвин. Для понимания целостности онтогенеза существенное значение имело раскрытие И. П. Павловым и его учениками роли центральной нервной системы как регуляторного фактора, обеспечивающего целостность организма животных и человека. Системный характер процессов старения человека и животных показан в исследованиях А. В. Нагорного и его сотрудников. Целостность растительного организма в процессе его индивидуального развития исследовал М. X. Чайлахян и другие физиологи растений. Большое значение в раскрытии целостности онтогенеза имели эмбриологические исследования, у истоков которых стояли К. Ф. Вольф и К. М. Бэр. Глубокую эволюционную трактовку целостности организмов в их индивидуальном и историческом развитии дал И. И. Шмальгаузен, развивший идеи А. Н. Северцова по этому вопросу.
Рассмотрим подробнее некоторые стороны тех обобщений, которые составляют основное содержание закона целостности онтогенеза. Известно, что индивидуальное развитие всех организмов носит стадийный характер. У вирусов стадии связаны с жизненным циклом, с их репродукцией и переходом из одной клетки в другую. Индивидуальное развитие одноклеточных включает фазы клеточного цикла — такие, например, как митоз, предсинтетическую фазу, фазу синтеза ДНК и постсинтетическую фазу. В онтогенезе многих растений выделяются хорошо различимые стадии чередования поколений (полового и бесполого). У растений и особенно животных четко разграничены стадии: эмбриональная, молодости, зрелости и старости. Возможно и более дробное членение онтогенеза.
Соответственно стадиям развития и уровню целостности следует различать: 1) цитогенетическое целое, присущее отдельной делящейся клетке; 2) эмбриональное целое, характеризующее фазы дробления яйца, дифференцировки, морфогенеза и роста зародыша в зародышевых оболочках; 3) постэмбриональное онтогенетическое целое, характерное для стадий молодости и зрелости; 4) инволюционное целое, отражающее системный характер инволюционного развития организма на стадии старости.
Для каждого уровня целостности характерна своя совокупность системно-регуляторных факторов. Однако, появившись на одной стадии развития, конкретный фактор может сохраняться в той или иной форме и на последующих, интегрируясь с новыми регуляторными системами.
В цитогенетическом целом, отдельно делящейся клетке, основное регуляторное значение имеет цитоплазматический контроль, а затем взаимодействие ДНК, РНК и белков. Генетическая информация в процессе матричного синтеза переходит с ДНК на РНК, а с РНК на белки. В свою очередь, осуществляя обратную связь, белки-ферменты и метаболиты-эффекторы играют роль регуляторов функционирования ДНК. Другую сторону целостности клетки составляет свойство раздражимости, проявляющееся в ее структурном и функциональном реагировании на воздействия среды.
В эмбриональном целом вступают в действие морфо-генетические системы регуляции, проявляющиеся в клеточном и тканевом взаимодействии при посредстве белков, играющих роль индуцирующих факторов эмбриогенеза. При этом имеют значение и другие факторы, обусловливающие целостность эмбрионального развития. Например, его пространственно-временная организация, фиксация каждого элемента развивающейся системы во времени и пространстве, полярность и самоорганизация системы, взаимная самонастройка, коадаптация ее элементов.
У высшего растения большое значение имеет взаимодействие листьев и корня со стеблем, на котором формируются генеративные органы. Помимо потоков питательных веществ, взаимодействие осуществляют системы гормональной регуляции и раздражимости растений.
У животных на постэмбриональных стадиях ведущее значение для поддержания целостности имеют нейрогуморальная и гормональная регуляции. Вместе с тем действуют механизмы более частной морфофизиологическон регуляции: непосредственное взаимодействие органов, тканевое и клеточное взаимодействие. На протяжении всех стадий онтогенеза у растений и животных функционируют внутриклеточные системы регуляции.
Системно-регуляторные факторы обеспечивают сохранение относительного постоянства, самотождественности организма и в то же время обусловливают его поступательное развитие. Наряду с этими проявлениями системной самоорганизации, характерными для восходящей ветви развития, на нисходящей ее ветви, в стадии старости, имеет место системная дезорганизация.
Роль системно-регуляторных факторов, обеспечивающих целостность развития, все конкретнее и полнее раскрывается в экспериментальных аналитических исследованиях молекулярной биологии развития организма. Сложность возникающих при этом проблем обусловлена тем фактом, что ход развития организма во всей полноте этого процесса не предопределен ДНК клетки, а обусловлен развивающимся целым (цитогенетическим, эмбриональным и т. д.). Поэтому аналитическое расчленение факторов развития, определение их только структурой ДНК недостаточны для познания закономерностей онтогенеза. Этот подход, весьма сложный сам по себе, должен быть интегрирован в научном анализе, основанном на системно-историческом осмыслении экспериментальных фактов индивидуального развития организма как целого. Это усложняет задачу исследователя, но только таким путем, через анализ системных факторов развития, можно раскрыть целостность онтогенеза, без чего невозможно познать его в полной мере.